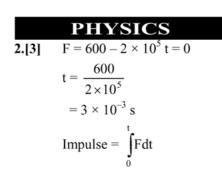
ULTIMATE TEST SERIES NEET -2020 (Answers & Solution)

JEE (ADVANCED), PMT & FOUNDATIONS

UTS- NEET -2020

MOCK TEST-08 SOLUTION

ANSWER KEY


PHYSICS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	3	3	1	1	4	3	1	3	2	4	4	3	3	3	1	2	2	2	1	2	4	2	4	1
Ques.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45					
Ans.	2	1	3	4	2	3	1	1	1	1	3	3	4	2	3	2	3	1	1	1					

CHEMISTRY																									
Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Ans.	3	3	2	2	1	1	2	4	4	1	3	3	2	1	2	4	2	3	2	1	2	3	1	4	1
Ques.	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90					
Ans.	2	1	1	1	4	1	2	2	2	1	2	4	3	1	3	3	1	1	2	2					

BIOLOGY

Ques.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans.	3	4	3	1	4	2	4	1	2	1	2	4	4	3	4	4	4	1	3	1
Ques.	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
Ans.	1	3	1	2	2	1	2	4	1	2	4	1	3	2	4	3	1	3	1	1
Ques.	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	1	3	4	4	4	3	4	2	2	2	2	4	1	2	4	4	2	4	1	4
Ques.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170
Ans.	3	4	4	2	2	2	2	3	4	2	3	3	4	4	4	2	4	1	3	1
Ques.	171	172	173	174	175	176	177	178	179	180										
Ans.	4	4	2	4	4	2	3	3	3	4										

3.[3] Let m be the mass of the disc. Then translational kinetic energy of the disc is :

$$K_{\rm T} = \frac{1}{2} \,\mathrm{mv}^2 \qquad \qquad \dots (1)$$

When it ascends on a smooth track its rotational kinetic energy will remain same while translational kinetic energy will go on decreasing. At highest point.

KT = mgh

Mock Test-08

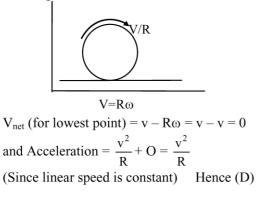
ULTIMATE TEST SERIES NEET -2020 (Answers & Solution)

or
$$\frac{1}{2}$$
 mv² = mgh
or $h = \frac{v^2}{2g} = \frac{(6)^2}{2 \times 10} = 1.8$ m

4.[1]
$$P = \frac{\text{Energy}}{\text{time}} = \frac{\text{dm}}{\text{dt}} \text{gh} = 100 \times 10 \times 100$$
$$= 100 \text{ kW}$$

5.[1] (i) W =
$$\Delta U = \left\{\frac{m}{6}g\left(\frac{\ell}{12}\right)\right\} = \frac{mg\ell}{72}$$

6.[4] From conservation of linear momentum $8 \times 6 = 4 \times v \Longrightarrow v = 12 \text{ ms}^{-1}$ As kinetic energy = $\frac{1}{2}$ mv²


7.[3]
$$\xrightarrow{V}$$
 2m \xrightarrow{V}

Initial momentum = mv final momentum = 3mVmv = 3mV $\Rightarrow V = v/3$

8.[1]
$$y_{cm} = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}$$

 $0 = \frac{\left(\frac{m}{4}\right)(15) + \left(\frac{3m}{4}\right)y}{\frac{m}{4} + \frac{3m}{4}}$
 $y = -5 \text{ cm}$
9.[3] $\frac{2}{5} \text{ MR}^2$

10.[2]
$$k = \frac{I}{2}\omega^2$$

12.[4] From figure

13.[3]
$$U = -\frac{GMm}{r}; K = \frac{GMm}{2r}; E = \frac{-GMm}{2r}$$

14.[3]
$$Y = \frac{F/A}{\frac{\Delta x}{L}} \Rightarrow F = \frac{YA}{L} \Delta x \propto \frac{A}{L}$$

$$V = AL \Rightarrow L \propto \frac{1}{A}$$

$$F \propto A^{2}$$

15.[3]
$$\theta = mS \Delta T$$

$$\frac{\Delta \theta}{\Delta t} = P$$

(P) (1) = 50 × 0.6 × 50 Cal
16.[1]
$$B_{\phi} = \gamma P; B_{\theta} = P$$

17.[2]

18.[2]
$$C_{V_{min}} = \frac{n\frac{3R}{2} + n\frac{5R}{2}}{n+n} = 2R$$
$$C_{p} = nC_{p}dT$$
$$Q = n(p\lambda)$$
$$= n3R(2T - T)$$
$$Q = 3nRT$$

19.[2]
$$T_1 = 2 \sec$$

 $T_2 = 2\pi \sqrt{\frac{16}{g}}$
 $= 4\left(2\pi \sqrt{\frac{1}{g}}\right) = 8 \sec$
 $t = \frac{T_1 T_2}{T_2 - T_1} = \frac{(8)(2)}{8 - 2}$
 $t = \frac{8}{3}$

Number of oscillation of shorter pendulum $n = \frac{t}{T_1} = \frac{4}{3}$

20.[1]
$$K = \frac{\pi}{20} \Rightarrow \frac{2\pi}{\lambda} = \frac{\pi}{20}$$

 $\lambda = 40 \text{ cm}$
Ans. $\Rightarrow \lambda/2 = 20 \text{ cm}$

Ans.
$$\Rightarrow \lambda/2 = 20$$
 cm

21.[2]
$$v = \sqrt{\frac{T}{\mu}} \Rightarrow v = \sqrt{\frac{1.6 \times 0.4}{10^{-2}}} = 8 \text{ m/s}$$

$$\Delta t = \frac{2L}{v} \Rightarrow \Delta t = \frac{2 \times 0.4}{8} = 0.1 \text{ sec.}$$

22.[4] By theory.

23.[2]
$$W_{A\to B} = q (V_B - V_A)$$

$$= q \int_{B}^{A} E.dr$$
$$= q_{0} \int_{2a}^{3a} \frac{\lambda}{2\pi\varepsilon_{0}r}.dr$$
$$= \frac{\lambda q_{0}}{2\pi\varepsilon_{0}} \ell n \frac{3}{2}$$

24.[4] (n × 1
$$\mu$$
F) 500 = 10⁶ μ C
n = $\frac{10^6}{500}$ = 2000

25.[1] $R_A = \frac{200 \times 200}{40} = 1000 \Omega, R_B = \frac{200 \times 200}{100} = 400 \Omega$

$$V_1 = \frac{V \times R_1}{R_1 + R_2} = 200$$

[considering that bulb A will not fuse]

$$\frac{V \times 1000}{1400} = 200$$
$$V = \frac{200 \times 1400}{1000} = 280 V$$
$$V_2 = \frac{V \times R_2}{R_1 + R_2} = 200$$
$$V = \frac{200 \times 1400}{400} = 700 V$$

If 700 volt is applied Bulb A will fuse. Hence correct answer is 280 volt

26.[2] By symmetry
$$R_{AB} = \frac{3R}{2}$$
.

27.[1]
$$\frac{3R}{R} = \frac{\ell}{100 - \ell} \implies 300 - 3\ell = \ell$$

 $\implies \ell = 75 \text{ cm}$

28.[3] There will be no force on the loop due to horizontal current carrying wires because forces acting on these wires will be equal and opposite. Further, $F_{AD} > F_{BC}$. F_{AD} is directed towards left hand side and F_{BC} towards right hand rule). Therefore, the net force acting on the loop will be towards wire.

29.[4]
$$\epsilon = VB\ell$$

= 4 × 1.25 × 10⁻⁴ × 2 = 10⁻³V

Mock Test-08

35.[1]
$$I_{\min} \propto (a - a)^2$$

 $I_{\min} \propto (2a - a)^2$
Clearly, the intensity of minima increases. Again
 $I_{max} \propto (a + a)^2$
Clearly, the intensity of maxima increases
36.[3] $p' = 1.25 p \& \lambda = \frac{h}{p}$
 $\frac{\lambda' - \lambda}{\lambda} \times 100 = (\frac{\lambda'}{\lambda} - 1) \times 100$
 $= (\frac{p}{p'} - 1) \times 100$
 $= (\frac{1}{1.25} - 1) \times 100$
 $= -20 \%$
37.[3] use, $\lambda = \frac{h}{\sqrt{2mqV_0}}$
38.[4] $F = 2hp$
39.[2] $F = -\frac{dU}{dr} = -m\omega^2 r$
 $m\omega^2 r = \frac{mv^2}{r}$
Also, $v = \omega r$ $mvr = \frac{nh}{2\pi}$
 $r = \sqrt{\frac{2nh}{2\pi\omega}}$
40.[3] $A = \frac{A_0}{2^{\frac{t}{T_{1/2}}}}$
 $2000 = \frac{16000}{2^{12/T_{1/2}}}$
41.[2] $\alpha = 0.9$
 $\frac{\Delta I_C}{\Delta I_E} = 0.9$
42.[3] $\overline{A} + \overline{B} = 4$
43.[1] Virtual, Inverted
44.[1] $g_d = g(1 - \frac{d}{R}) = g(1 - \frac{R}{2R}) = \frac{g}{2}$

CHEMISTRY

- **46.[3]** atom of $X = 3 \times 10^{23}$ Mole atom of X = 0.5Atomic wt. of $X = \frac{80}{0.5} = 160$
- 47.[3] Number of electrons = $2 \times 10^{-3} \times 6.02 \times 10^{23} \times 10$ = 1.2×10^{22}

48.[2]
$$T = 1.52 \times 10^{-16} \frac{n^3}{Z^2} \text{ sec.}$$

 $\frac{T_1}{T_2} = \frac{(2)^3}{(1)^2} \times \frac{(2)^2}{(3)^3} = \frac{32}{27}$

49.[2]
$$M_{av.} = \frac{M_1 x_1 + M_2 X_2 + M_3 x_3}{x_1 + x_2 + x_3}$$

According to option (2)
 $(M + 0.5) = \frac{M \times 4 + (M + 1) \times 1 + (M + 2) \times 1}{4 + 1 + 1}$
then L.H.S. = R.H.S

50.[1]
$$\Delta E \propto \frac{1}{n_1^2} - \frac{1}{n_2^2}$$

51.[1] Boiling moles the bond strianed

52.[2] w =
$$-2.303$$
 nRT log $\frac{V_2}{V_1}$

53.[4]
$$\frac{1}{2}$$
 N₂(g) + O₂(g) \implies NO₂(g) ... (1)
2NO₂(g) \implies N₂O₄(g) ... (2)

$$\frac{1}{2}N_{2}(g) + O_{2}(g) \implies N_{2}O(g) \qquad \dots (3)$$

i.e. (3) = (1) × 2 + (2)
$$K_{3} = K_{1}^{2}K_{2}$$
$$K_{3}' = \frac{1}{K_{3}}$$

54.[4]
$$K_{sp} = (S^2) + 10^{-4}S$$

 $S = \frac{K_{sp}}{10^{-4}} = \frac{10^{-16}}{10^{-4}} = 10^{-12}$

55.[1] After mixing

$$[Ag^{+}] = \frac{1}{2} \times 10^{-4} = 5 \times 10^{-5} M$$

$$[Cl^{-}] = \frac{1}{2} \times 10^{-4} = 5 \times 10^{-5} M$$

$$K_{ip} = [Ag^{+}] [Cl^{-}] = (5 \times 10^{-5})^{2}$$

$$= 2.5 \times 10^{-9}$$

Since ionic product is greater than Ksp hence precipitation will take place.

Mock Test-08

ULTIMATE TEST SERIES NEET -2020 (Answers & Solution)

57.[3] FCC lattice have six face and each face is shared by one other unit cell.

58.[2] ($\pi \propto$ No. of particel)

59.[1]
$$y_A = \frac{P_A^0 X_A}{P_A^0 X_A + P_B^0 X_B}$$

 $y_A = \frac{1}{1 + \frac{P_B^0 X_B}{P_A^0 X_A}}$
 $y_A = \frac{1}{1 + (3)(3)} = \frac{1}{10} = 0.1$

60.[2] Fact $\lambda_{\rm M} \operatorname{NaNO}_3 = \lambda_{\rm M} \operatorname{KNO}_3 - \lambda_{\rm M} \operatorname{KCl}$

$$= 128 + 111 - 152 = 87 \text{ S cm}^2 \text{ mol}^{-1}$$

61.[4]
$$E_{cell} = E_{Cell}^{o} - \frac{0.0591}{6} \log \frac{(Cr^{+3})^2}{(Fe^{+2})^3}$$

= $(-0.42 - (-0.72)) - \frac{0.0591}{6} \log \frac{(0.1)^2}{(0.01)^3}$
= $0.30 - \frac{0.0591}{6} \log 10^{+4}$
= $0.30 - 0.04$
= $0.26 V$

62.[2]
$$\frac{R_A}{4} = \frac{R_B}{1} = \frac{R_C}{2} = \frac{R_D}{2}$$

63.[3] $K = \frac{R}{[A]} = \frac{7.5 \times 10^{-4}}{0.5}$
 $= 1.5 \times 10^{-3} \text{ sec}^{-1}$

- 67.[3] β -keto acid.
- **68.[1]** Include stereo isomers.
- **69.[4]** It has localised *l*.p.
- 72.[1] Intramolecular Cannizzaro.
- 74.[1] Nucleophilicity $\propto K_b$.

76.[1]
$$Ph-NO_2 \rightarrow Ph-NH_2 \rightarrow Ph-N \cong C \rightarrow Ph-NH-CH_3$$

79.[2] Intramolecular E.S.R.